
Information Coding / Computer Graphics, ISY, LiTH

TNM084!

Procedural images

Ingemar Ragnemalm, ISY

1(79)

1(79)

Information Coding / Computer Graphics, ISY, LiTH

Lecture 6!
!

Procedural geometry!
!

Fractals

2(79)2(79)

Information Coding / Computer Graphics, ISY, LiTH

Lecture questions!
!

1. How can you calculate the normal vector of a surface?!
!

2. What kind of functions a suitable for blobby objects?!
!

3. What is the idea of turtle graphics?!
!

4. When is a matrix stack useful?!
!

5. What does the fractal dimension 2.5 mean for a 3D
fractal?!

!
6. What determines the output of a self-squaring fractal?

3(79)3(79)

Information Coding / Computer Graphics, ISY, LiTH

Procedural geometry!
!

Producing models with code:!
!

Simple shapes with customizable detail!
!

Shapes with repeating detail!
!

Sampling functions!
!

Sweeping!
!

Tools for geometry generation

4(79)4(79)

Information Coding / Computer Graphics, ISY, LiTH

Simple shapes with customizable detail!
!

Example: Sphere!
!

1. Define in polar coordinates. Setting: Number of steps
along each coordinate!

!
2. Define by tesselation. Setting: Number of tesselation steps

5(79)5(79)

Information Coding / Computer Graphics, ISY, LiTH

Sphere from polar coordinates!
!

Decide number of steps for longitude and latitude!
!

Go around the sphere using trigonometric functions (sin and
cos) with steps by angle or height

Few latitude (sideways) steps Few longitude (top-to-bottom) steps

6(79)6(79)

Information Coding / Computer Graphics, ISY, LiTH

Sphere by tesselation!
!

Split each triangle into three triangles.!
!

Move the new vertex to the surface.

7(79)7(79)

Information Coding / Computer Graphics, ISY, LiTH

Shapes with repeating detail!
!

Examples: Stars, polygons!
!

Number of details can be customizable but also
additional parameters.

8(79)8(79)

Information Coding / Computer Graphics, ISY, LiTH

Another example: Arrows

!
No repeating detail

but highly
customizable.!

!
All arrows are made
from code, the same

code!

9(79)9(79)

Information Coding / Computer Graphics, ISY, LiTH

Sampling a function!
!

A model can be constructed from a mathematical function!
!

Sample at suitable distance and create polygons (triangles)!
!

Find functions that create closed models.

10(79)10(79)

Information Coding / Computer Graphics, ISY, LiTH

Yet another image stolen!
from Wikipedia

Blobby objects, Metaballs!
!

Build shapes from sets of points. Represent surfaces by
distance functions!

!
A shape = set of points + weights

11(79)11(79)

Information Coding / Computer Graphics, ISY, LiTH

Blobby objects!
!

Gaussian functions (”Gaussian bumps”)

f(x) = ∑ bk * exp(x - pk)!
!

Surface at f(x) =
threshold

But Gaussians are not fast!

12(79)12(79)

Information Coding / Computer Graphics, ISY, LiTH

Blobby objects!
!

Gaussian: A function that falls off towards zero and has a
top at 1!!

!
Can we use something else? Best if:!

!
• Smooth!

!
• Reaches zero at a known radius! (Why?)

13(79)13(79)

Information Coding / Computer Graphics, ISY, LiTH

Possible function:!
!

f(x) = R / sqrt((x - x0)2)!
!

Why can this work? Big peak in the middle, that is not a
gaussian!!

!
Even better if we can avoid division and square root.!

!
Smoothstep is perfectly feasible and a decent

approximation of a gaussian.

14(79)14(79)

Information Coding / Computer Graphics, ISY, LiTH

Drawing blobby objects

In 2D, blobby objects are easily made by just checking if a pixel is inside/outside.

In 3D, we want to produce surfaces! How can we do that?

15(79)15(79)

Information Coding / Computer Graphics, ISY, LiTH

In the book!
!

Procedural geometry in the book focuses on fractal
geometry (L-systems etc). More about these later.

Marching cubes!
!

Voxels with density values!
Treshold in density!

Voxels are corners of cubes!
Create polygons in the treshold.

Bild fr Wikipedia

16(79)16(79)

Information Coding / Computer Graphics, ISY, LiTH

Marching squares - Marching cubes i 2D

17(79)17(79)

Information Coding / Computer Graphics, ISY, LiTH

Sweeping (Rotational sweep)!
!

Circular symmetric shapes!
!

Define by a curve (preferrably a spline) which is rotated and
vertices created along it.

18(79)18(79)

Information Coding / Computer Graphics, ISY, LiTH

Sweeping of 2D shapes!
!

Sweeping can also be made with closed curves. Typical
case: The torus, sweeping of a circle.

19(79)19(79)

Information Coding / Computer Graphics, ISY, LiTH

Normal vectors!
!

Hard problem for many procedural shapes!
!

• Calculate from known geometry. Easy for some shapes,
but not all.!

!
• Sample the geometry to find differential steps and

calculate normal from these.!
!

• Post-processing. Find polygons (e.g. triangles) touching
each vertex. Caclulate normal.

20(79)20(79)

Information Coding / Computer Graphics, ISY, LiTH

Analytical normal vectors for sweeping!
!

Variation along height and around object!
!

Simple case: Cylinder

r

!

p(u, !) = (rsin!, u, rcos!)

u = (0, 1, 0)

= (rcos!, 0, -rsin!)

dp!
du
dp!
d!

dp!
du

dp!
d!xn(u, !) = = (rsin!, 0, rcos!)

As expected: Straight out

21(79)21(79)

Information Coding / Computer Graphics, ISY, LiTH

Harder case: Sin wave

Normal vector varies by height

r

!

p(u, !) = (sin!(sinu + r), u, cos!(sinu + r))

u
= (sin!cosu, 1, -sin!cosu)

= (cos!(sinu + r), 0, -sin!(sinu + r))

dp!
du
dp!
d!

dp!
du

dp!
d!xn(u, !) = = (sin!, (cos2! - sin2!) cosu, cos!)

22(79)22(79)

Information Coding / Computer Graphics, ISY, LiTH

Calculating normal vectors from geometry!
!

• Find all neighbor triangles. Calculate normals for each
triangle with cross product. Make a weighted average.!

!
• Triangle method: Find three vertices enclosing the vertex.

Find normal by cross product of two edges.!
!

• Cross method. Find four vertices enclosing the vertex.
Make a vector from each opposing pair, get normal with

cross product.!
!

If the geometry is known, find neighbor samples of the
geometry and use the cross or triangle method.

23(79)23(79)

Information Coding / Computer Graphics, ISY, LiTH

All triangles method!
!

Most precise and most general. Also most work.

24(79)24(79)

Information Coding / Computer Graphics, ISY, LiTH

Triangle method!
!

Only three vertices. Surprisingly good.!
!

Note that the target vertex is not involved. How can that
work?

25(79)25(79)

Information Coding / Computer Graphics, ISY, LiTH

Cross method!
!

Four vertices. Good if vertex locations are (more or less)
axis aligned.!

!
Again, the target vertex is not involved.

26(79)26(79)

Information Coding / Computer Graphics, ISY, LiTH

Why can we get a good approximation from
the neighbors alone?!

!
The neighbors form a plane for which the normal tends to be

a good normal for the vertex inside the triangle/cross. It
doesn't matter hos the center vertex moves.

27(79)27(79)

Information Coding / Computer Graphics, ISY, LiTH

Sweeping and normals!
!

Simple case for normal vectors. Only the Y component varies along
a vertical slice, the others are given by the rotation step. Thus, just
taking one step up and down along the spline suffices!, Or use the
mathematical derivative of the spline like above, if that is feasible

for the shape.

φ
cos φ, sin φ
give x and z

gives y

28(79)28(79)

Information Coding / Computer Graphics, ISY, LiTH

Turtle graphics!
!

"Pen" in relative (local) coordinates.!
!

Pen position and orientation!
!

Simple commands, "forward", "turn 90 degrees"!
!

2D or 3D system.

29(79)29(79)

Information Coding / Computer Graphics, ISY, LiTH

Turtle graphics examples!
!

From Wikipedia

30(79)30(79)

Information Coding / Computer Graphics, ISY, LiTH

Turtle graphics examples!
!

From Python lib/turtle.py!
!

from turtle import *!
color('red', 'yellow')!
begin_fill()!
while True:!
 forward(200)!
 left(170)!
 if abs(pos()) < 1:!
 break!
end_fill()!
done()!

31(79)31(79)

Information Coding / Computer Graphics, ISY, LiTH

OpenSCAD, the procedural geometry CAD program!
!

A CAD modelling software based on code! You are literally
programming your models, and get a 3D model out.!

!
Simple example just put together existing shapes.!

!
Advanced use model with coordinates and splines.!

32(79)32(79)

Information Coding / Computer Graphics, ISY, LiTH

OpenSCAD wheels, transformations!
!

Uses existing parts!
!

use <vehicle_parts.scad>;!
$fa = 1;!
$fs = 0.4;!
!
wheelbase = 40;!
track = 35;!
!
translate([-wheelbase/2, track/2])!
 simple_wheel();!
translate([-wheelbase/2, -track/2])!
 simple_wheel();!
translate([-wheelbase/2, 0, 0])!
 axle(track=track);

33(79)33(79)

Information Coding / Computer Graphics, ISY, LiTH

OpenSCAD heart example!
!

points = [for (t=[0:step:359.999]) [16*pow(sin(t),3), 13*cos(t) -
5*cos(2*t) - 2*cos(3*t) - cos(4*t)]];

34(79)34(79)

Information Coding / Computer Graphics, ISY, LiTH

Old OpenGL procedural geometry!
!

Big thing in old OpenGL!
!

Used the "immediate mode"!
!

Recorded to "display lists" for performance!
!

Phased out with OpenGL 3.

35(79)35(79)

Information Coding / Computer Graphics, ISY, LiTH

Immediate mode!
!

Specify geometry by function calls per vertex:!
!

glBegin(GL_POLYGON);!
 glColor3f(1, 0, 0); glVertex3f(-0.6, -0.75, 0.5);!
 glColor3f(0, 1, 0); glVertex3f(0.6, -0.75, 0);!
 glColor3f(0, 0, 1); glVertex3f(0, 0.75, 0);!
glEnd();!

!
draws a triangle with different colors.

https://cs.lmu.edu/~ray/notes/openglexamples/

Too many function calls for large models.

36(79)36(79)

Information Coding / Computer Graphics, ISY, LiTH

Classic examples!
!

Gears (glxGears standard example in Mesa)!
!

Creates three matching gears procedurally.

37(79)37(79)

Information Coding / Computer Graphics, ISY, LiTH

The matrix stack!
!

Old OpenGL managed a "matrix stack" for dealing with
hierarcical models.!

!
glPushMatrix()!
glPopMatrix()!

!
Makes it easier to build hierarchical models

38(79)38(79)

Information Coding / Computer Graphics, ISY, LiTH

Revisited: Transformations to sub-systems
under model coordinates!

!
Used for dependencies in hierarchical models

Model coordinates

Body of windmill

Top of windmill

with rotation for
top (around y)

Axis for blades

The axis can rotate
(around x or z)

Blade

Blades rotate by
following the
rotation of the axis

39(79)39(79)

Information Coding / Computer Graphics, ISY, LiTH

What if you have multiple braches/
dependencies?!

!
Use the matrix stack to get back to earlier nodes

M1

back!

M2

M3
back!

back!M4

back! M5

M6
For every node that you want to go
back to, save the current matrix with
glPushMatrix().

Go back with glPopMatrix()

40(79)40(79)

Information Coding / Computer Graphics, ISY, LiTH

Why do we care?!
!

Procedural modelling in OpenGL has fallen out of fashion -
but is it useless?!

!
How about doing this with modern code?

41(79)41(79)

Information Coding / Computer Graphics, ISY, LiTH

OpenGL Utilities for Geometry Generation
(GLUGG)!

!
My code package for creating procedural geometry in a modern

way, but similar to the old way.!
!

• Create geometry with similar calls, gluggVertex etc!
• Supports transformations and a matrix stack.!

• Generates a vertex/polygon list (optionally with an index array)
for uploading to a VAO.!

!
Intended for generating geometry at the initialization of a program.

42(79)42(79)

Information Coding / Computer Graphics, ISY, LiTH

#include "MicroGlut.h"!
#include "GL_utilities.h"!
#include "glugg.h"!
!
GLuint program; // Shader!
gluggModel triangle;!
!
void draw(void)!
{!
! glClear(GL_COLOR_BUFFER_BIT);!
! !
! gluggDrawModel(triangle, program);!
! !
! glutSwapBuffers();!
}!
!

Simple usage of GLUGG: Triangle
void init(void)!
{!
! program = loadShaders("minimal.vert", "minimal.frag");!
! !
! /* make the triangle */!
! gluggBegin(GLUGG_TRIANGLES);!
! gluggVertex(-0.5,-0.5,0);!
! gluggVertex(0.5,-0.5,0);!
! gluggVertex(-0.5,0.5,0);!
! triangle = gluggBuildModel(0);!
}!
!
int main(int argc, char *argv[])!
{!
! glutInit(&argc, argv);!
! !
! glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);!
! glutInitContextVersion(3, 2);!
!
! glutCreateWindow("GLUGG White Triangle");!
! init();!
! glutDisplayFunc(draw);!
!
! glutMainLoop();!
! return 0;!
}!

43(79)43(79)

Information Coding / Computer Graphics, ISY, LiTH

Building with multiple parts and the matrix stack!
!

The snowman (based on old demo from lighthouse3d)

44(79)44(79)

Information Coding / Computer Graphics, ISY, LiTH

gluggModel MakeSnowman()!
{!
! gluggBegin(GLUGG_TRIANGLES);!
!
! gluggColor(1.0f, 1.0f, 1.0f);!
!
// Draw Body!!
! gluggTranslate(0.0f ,0.75f, 0.0f);!
! gluggSphere(20,20, 0.75f);!
!
// Draw Head!
! gluggTranslate(0.0f, 0.95f, 0.0f);!
! gluggSphere(20,20, 0.25f);!

// Draw Eyes!
! gluggPushMatrix();!
! gluggColor(0.0f,0.0f,0.0f);!
! gluggTranslate(0.05f, 0.10f, 0.18f);!
! gluggSphere(10,10, 0.05f);!
! gluggTranslate(-0.1f, 0.0f, 0.0f);!
! gluggSphere(10,10, 0.05f);!
! gluggPopMatrix();!
!
// Draw Nose!
! gluggColor(1.0f, 0.5f , 0.5f);!
! gluggRotate(M_PI/2.0,1.0f, 0.0f, 0.0f);!
! gluggCone(10, 0.5, 0.08f);!
!
! return gluggBuildModel(0);!
}

The code for making the snowman!
!

Parts made in other functions are built together using transformations and
the matrix stack

45(79)45(79)

Information Coding / Computer Graphics, ISY, LiTH

Building with Bézier surfaces!
!

Bézier surfaces are built-in!!
!

G1/C1 continuity is up to you (currently).!
!

Used for the 4-patch "surface" and for the Utah Teaset!

46(79)46(79)

Information Coding / Computer Graphics, ISY, LiTH

Plenty of demos and a (hopefully)
decent documentation!

!
…but very little used by others than myself - until now.

47(79)47(79)

Information Coding / Computer Graphics, ISY, LiTH

Usage in lab 3!
!

GLUGG will be used in the first part of Lab 3. It has been used for that for
two years with good results.!

!
The latest version can be found here:!

!
https://computer-graphics.se/packages/glugg.html

48(79)48(79)

Information Coding / Computer Graphics, ISY, LiTH

Procedural geometry, summary (so far)!
!

Produces flexible, customizable and detailed geometry!
!

Sweeping, normal vectors!
!

Matrix stack for handling multiple branches!
!

Several approaches:!
!

Turtle graphics!
OpenSCAD!

Old-style OpenGL!
GLUGG!

!
But where does the noise/randomness come in?!

!
Right now:

49(79)49(79)

